Hledat
Mapa cennemovitostí v ČR
estav.tvnový videoportál
Všechna témata
Vytápění domu a zdroje tepla více o tématu

Co způsobují plyny v otopné soustavě?

Odstranění plynů z otopné vody a všech zařízení v tepelných soustavách je jedním ze základních předpokladů k jejich správné funkci. Bublinky, které nám v radiátorech a trubkách případně běhají otopné soustavě neprospívají. Z radiátorů i potrubí bychom se jich měli zbavit. V tomto článku si řekneme, co nám za plyny může kolovat v soustavě a co způsobují.

Článek se zabývá výskytem plynů v teplovodních otopných soustav (dále jen OS), druhy plynů a důsledkům při jejich výskytu v OS.

Vysvětlení cizích pojmů

V článku jsou použity tyto odborné pojmy či cizí slova:
Koroze – rozpouštění kovů vlivem elektrochemické reakce s okolím
Difuze – samovolné rozptylování částic v prostoru

Kudy se dostává vzduch do otopné soustavy?

Při napouštění vody do OS dostává určité množství vzduchu. Voda používaná k napouštění OS (pitná) má běžně teplotu kolem 10–15 °C. Každý 1 m3 vody obsahuje 22 až 29 litrů vzduchu. Ve vzduchu je přibližně 78 % dusíku (N2) a 21 % kyslíku (O2). Vzduch se dostává do vody nejen při prvním napouštění soustavy, ale také při každém dalším doplňování vody po opravách či rekonstrukcích rozvodů potrubí. Napouštění vody se provádí běžně hadicí. Před napojením hadice na napouštěcí místo je vhodné celou hadici naplnit vodou, aby se do soustavy dostávalo co nejméně vzduchu. Napouštění se provádí v nejnižších místech, kterých může být v soustavě několik. Obr. 1 ukazuje napouštění vody přes „koupelnový žebřík“ a přes kotel.

Také difuzí se může dostat do otopných soustav určité množství vzduchu. Ocel i měď mají propustnost vůči plynům zanedbatelnou. Plasty, pryž a další materiály pronikání kyslíku umožňují ve větší míře než kovy. Difuze kyslíku u plastových trubek je řádově až tisíckrát vyšší než u trubek kovových. Množství kyslíku vnikajícího do vody řeší např. německá průmyslová norma DIN 4726 [1]. Podle ní není povolena propustnost materiálu potrubí pro kyslík vyšší než 0,1 mg na 1 litr objemu OS a den.

Co způsobí výskyt plynů v otopné soustavě?

Plyny obsažené ve vodě otopných soustav negativně ovlivňují koloběh vody, mohou být příčinou hluku, způsobují korozi a další problémy. Pokud se plyny vyskytují rozpuštěné ve vodě a jejich koncentrace je vysoká, začnou se tvořit mikrobublinky nebo i bublinky. Bublinky plynů se soustřeďují v „místech klidu“. Nejčastěji to bývá v místech s menším hydrostatickým tlakem.

Velkým problémem je přerušení cirkulace vody, kdy přestane některé z otopných těles topit. V nejvyšších místech otopné soustavy se shromažďují plyny, je zde nejnižší hydrostatický tlak. Bývá to často u otopných těles, a pokud je těleso „zavzdušněné“, omezí se cirkulace vody, případně úplně přeruší a těleso pak topí málo nebo vůbec. Odstranění této závady je poměrně jednoduché – vypuštění plynů zachycených v tělese pomocí odvzdušňovacího ventilku, přes který se nashromážděné plyny dostanou ven.

Zachytávání plynů v otopném tělese může podporovat i časté plné uzavírání regulačního ventilu. Průtok otopné vody tělesem se zastaví a bublinky plynu mají čas se shromáždit v horní části tělesa. Tento proces se cíleně využívá v některých konstrukcích odlučovačů plynů.

Jiným problémem je koroze některých částí otopných soustav způsobená plyny obsaženými ve vodě. Koroze materiálů vzniká největší měrou přítomností kyslíku, ostatní plyny způsobují korozi v mnohem menší, proti kyslíku až v zanedbatelné míře. Stále se ještě někde používají otevřené otopné soustavy, kde se kyslík dostává do oběhové vody ve velkém množství. Projektanti, ale i odborníci na vytápění doporučují už mnoho let staré otevřené otopné soustavy rekonstruovat a upravit na uzavřené. Otevřenou expanzní nádobou se může do vody dostat až 6 mg kyslíku s každým litrem vody, u uzavřených soustav je to méně než 0,1 mg/litr.

Druhy plynů v otopné soustavě

Ve vodě teplovodních OS se vyskytují nejčastěji plyny: kyslík, dusík, vodík, v menším množství i metan či sirovodík, výjimečně i další plyny. Jejich množství ve vodě se během průběhu topné sezóny může měnit.

Kyslík ve vodě reaguje poměrně rychle a je hlavním původcem (příčinou) vzniku koroze. Váže se na kovy a to již během 4–5 hodin po napuštění vody do soustavy. O době reakce rozhoduje velikost OS a množství kovových součástí. Se železem vytváří oxid železitý (Fe2O3) a následně ještě magnetovec (Fe3O4). Voda pak získává tmavou až černou barvu. Pokud jsou v OS jiné kovy (měď, hliník) vznikají působením kyslíku jejich oxidy. Kyslík se při chemické reakci spotřebuje. Do OS se dostává téměř výhradně v rozpuštěné formě. Zvýšené riziko koroze nastává, pokud koncentrace kyslíku přesáhne 0,1 g/m3 vody.

Dusík se do OS dostává při prvním plnění a samozřejmě s doplňovací vodou, v menším množství také difuzí přes těsnění ve spojích, nejčastěji na sací straně čerpadel. Je původcem vytváření proudu smíšeného ze dvou částí: plyn/voda. Způsobuje poruchy cirkulace a kavitační hlučnost, zejména u otopných těles. Molekuly dusíku působí jako izolant, snižují tepelnou kapacitu vody. Dusík se nespotřebovává na rozdíl od kyslíku chemickou reakcí a ve vodě se proto vyskytuje ve větším množství. Volné bublinky dusíku zesilují erozi a způsobují opotřebení některých částí čerpadel a ventilů.

Vodík se vytváří v případě, že jsou v OS použity různé druhy materiálů (s různým elektrochemickým potenciálem). Nejčastěji jsou to kombinace: hliník – ocel a měď – ocel. V určitém malém množství vzniká vodík ze železných materiálů reakcí při korozi nebo při rozkladu tuků či mazadel z montáže. Důležitou roli v OS z hlediska vodíku má použití hliníkových radiátorů. Jejich ochranná vrstva je stabilní do PH hodnoty vody 8,5. Při použití hliníkových otopných těles (dále jen OT) může být koncentrace vodíku i přes 3 mg/litr vody. To vede při teplotě nad 30 °C a přetlaku vody 1 bar k tvorbě volných bublinek plynu.

Sirovodík se může vyskytovat v OS, které obsahují některé části z mědi. Do OS se může přidávat za účelem úpravy vody siřičitan sodný (Na2SO3). Důsledkem je pak vznik sirovodíku (H2S). Sirovodík reaguje s oxidem mědi (Cu2O) a vzniká sulfid mědi (Cu2S). Ten nevytváří žádnou ochrannou vrstvu a dochází ke korozi.

Metan je produktem hnilobných procesů bakterií. Ty se mohou dostat do potrubí a následně vody při špatném skladování částí OS.

Ing. Jaroslav Dufka

Je autor 17 knih z oboru TZB, z nich 10 na téma vytápění. Dříve učil na SPŠ žáky-učně v učebním oboru Instalatér a studenty v maturitním oboru MIEZ. V současnosti je v důchodu. Je členem redakční rady časopisu Topenářství Instalace

Sdílet / hodnotit tento článek

Další kapitoly tématu „Vytápění domu a zdroje tepla

  1. Jaký je rozdíl mezi teplem a teplotou? Jak se určuje vnitřní a venkovní teplota?
  2. Co má umět moderní automatický kotel na tuhá paliva?
  3. Jak správně vybrat krbová kamna
  4. Problém dnešních novostaveb – málo místa na vytápění
  5. Tip jak ušetřit za palivo
  6. Dřevěné brikety – jak s nimi topit?
  7. Od září 2015 mají i plynové kotle, tepelná čerpadla a zásobníky energetický štítek
  8. Vytápění domácností extralehkým topným olejem. Vyplatí se? Je šetrné k životnímu prostředí?
  9. Pokojový termostat, nebo něco lepšího?
  10. Pojistný ventil otopné soustavy. K čemu je dobrý a jak funguje?
  11. Termostatický ventil teplotu neřídí! Jak funguje a k čemu slouží?
  12. Zabezpečení otopné soustavy: Co je expanzní nádoba a jak funguje
  13. Pitná voda není vhodná pro plnění topení. Proč je škodlivá pro otopnou soustavu?
  14. Jak připravit kotel na tuhá paliva na topnou sezónu?
  15. Jak připravit plynový kotel na zimu?
  16. Co je teplotní spád a jaký má význam pro topnou soustavu
  17. Co způsobují plyny v otopné soustavě?
  18. Odvzdušňovací ventil – kde ho najít a jak funguje
  19. Postup odvzdušnění otopné soustavy
  20. Hliníková folie za radiátorem. Ano nebo ne? Může uspořit energie? A může situaci i zhoršit?

Mohlo by vás zajímat

Zdroj: Fotolia.com - vladdeep

Pitná voda není vhodná pro plnění topení. Proč je škodlivá pro otopnou soustavu?

Podstatou funkce běžné otopné soustavy rodinného či bytového domu je proudící kapalina, nejčastěji se využívá voda. Voda má vysoké měrné teplo, dobrou teplotní a tepelnou vodivost i další výhodné vlastnosti. Avšak vod je více druhů. Ta, co pijeme je sice prospěšná pro lidské tělo, ale ne pro potrubí a radiátory.…

© Fotolia.com - gmstockstudio

Odvzdušňovací ventil – kde ho najít a jak funguje

Odstranění plynů z otopné vody a všech zařízení v tepelných soustavách je jedním ze základních předpokladů k jejich správné funkci. Bublinky, které nám v radiátorech a trubkách případně běhají teplo nevedou. Ze soutavy, radiátorů i potrubí bychom se jich měli zbavit. To provedeme pomocí odvzdušňovacích ventilů.…

Pojistný ventil otopné soustavy. K čemu je dobrý a jak funguje?

Pojistný ventil otopné soustavy. K čemu je dobrý a jak funguje?

Zabezpečovací zařízení teplovodních otopných soustav slouží k zajištění bezpečného provozu a sestává se ze dvou částí: expanzní nádoby a pojistného ventilu. Při zahřátí se každý materiál roztahuje. Platí to i o vodě. Aby nenastala katastrofa v podobě povolení spojů v soustavě, je nutné na soustavu instalovat…

Zabezpečení otopné soustavy: Co je expanzní nádoba a jak funguje

Zabezpečení otopné soustavy: Co je expanzní nádoba a jak funguje

Zabezpečovací zařízení teplovodních otopných soustav slouží k zajištění bezpečného provozu a sestává se ze dvou částí: expanzní nádoby a pojistného ventilu. Při zahřátí se každý materiál roztahuje. Platí to i o vodě. V otopné soustavě může být i několik stovek litrů vody. Dnes se podíváme, jak takové objemy vyrovnává…

Co je teplotní spád a jaký má význam pro topnou soustavu

Co je teplotní spád a jaký má význam pro topnou soustavu

Pro porozumění si s odborníky topenáři, musíme mluvit jejich jazykem. Co ale znamená, když se od topenáře dozvíme, že máme teplotní spád 90/70. K čemu je nám to dobré? A co se stane když se teplotní spád (například výměnou kotle) změní na 75/65? Nezasvěcený bude asi chvilku tápat. Čtenáři ESTAV.cz tápat nemusí.

REKLAMA